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The binding energy and wave functions of two-dimensional indirect biexcitons are studied analytically and
numerically. It is proven that stable biexcitons exist only when the distance between electron and hole layers
is smaller than a certain critical threshold. Numerical results for the biexciton binding energies are obtained
using the stochastic variational method and compared with the analytical asymptotics. The threshold interlayer
separation and its uncertainty are estimated. The results are compared with those obtained by other techniques,
in particular, the diffusion Monte Carlo method and the Born-Oppenheimer approximation.
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I. PROBLEM AND MAIN RESULTS

The physics of cold excitons—bound states of electrons
and holes in semiconductors—has attracted much attention
recently. Cooling the excitons has become possible by con-
fining electrons and holes in separate two-dimensional �2D�
quantum wells, which greatly increases their lifetime. A
number of intriguing phenomena has been demonstrated for
such “indirect” excitons, including long-range transport,1–6

macroscopic spatial ordering,3 and spontaneous coherence.7

Theoretical work on these phenomena is ongoing; see Ref. 8
for review. Further progress in this field requires an im-
proved understanding of exciton interactions.

Despite being charge neutral, indirect excitons possess a
dipole moment ed, where d is the separation of the electron
and hole quantum wells. As a result, interaction of two exci-
tons at large distances r is dominated by their dipolar repul-
sion,

V�r� =
e2

�

d2

r3 , �1�

where � is the dielectric constant of the semiconductor. At
short distances exchange and correlation effects are also im-
portant. The interaction may even become attractive over a
range of r. In this case two excitons can form a bound
state—a biexciton. The corresponding binding energy is de-
fined by

EB = 2EX − EXX, �2�

where EX and EXX are the ground-state energies of the exci-
ton and biexciton, respectively.

While observations of biexcitons in single quantum well
structures �d=0� have been described multiple times,9–16 no
such reports exist for the d�0 case. A recent theoretical
work17 has attributed the lack of experimental signatures of
indirect biexcitons to extreme smallness of their binding en-
ergies. In this paper we verify and improve all previously
known estimates of EB. In particular, we show that EB�d� is
positive, i.e., the biexciton is stable, only for d smaller than
some critical value dc; see Fig. 1. Typical experimental
parameters8,18 fall on the d�dc part of the diagram.

In our calculations we adopt the simplifying assumption
that the effective masses me and mh�me of electrons and
holes are constant and isotropic. We also treat the quantum

wells as 2D layers of zero thickness. We find it convenient to
measure distances in units of the effective electron Bohr ra-
dius and energies in units of the effective Rydberg,

ae =
�2�

mee
2 , Rye =

1

2

e2

�ae
, �3�

respectively. With these conventions, the four-particle system
of two electrons and two holes is described by the Hamil-
tonian HXX=T+U, where

T = T1 + T2, Tj = − � j
2 − ��Rj

2 , �4�

U =
2

�r1 − r2�
+

2

�R1 − R2�
− �

ij
v�ri − R j,d� , �5�

v�r,d� =
2

��r�2 + d2
. �6�

Here ri and Ri are 2D coordinates of the electrons and the
holes, respectively, � j =d /dr j, and

� = me/mh �7�

is the mass ratio. Similarly, the single-exciton Hamiltonian is
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FIG. 1. �Color online� Critical interlayer separation dc above
which the biexciton is unstable as a function of the electron-hole
mass ratio �. The circles are our results. The squares are from Ref.
24. The triangles correspond to d above which EB�d� drops below
10−3Rye, making biexcitons irrelevant in experimental practice.
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HX = T1 + v�r1 − R1,d� . �8�

The problem is characterized by two dimensionless param-
eters: d and �. The electron-hole symmetry entails

Ea� 1

�
,d� = �Ea��,

d

�
�, a = X or XX , �9�

and so it is sufficient to consider 0���1.
The case of d=0 �direct excitons� has been studied

extensively.19–21 In contrast, high-accuracy calculations of EB
for d�0 have been carried out only in the aforementioned
Ref. 17. The authors of that work employed the diffusion
quantum Monte Carlo �DMC� method. Away from d=0, they
were able to fit their results for �=1 and �=1 /2 to the ex-
ponential

EB�d� � �e−�d. �10�

This result is surprising. Equation �10� seems to imply that
the biexcitons are stable at any d, i.e., dc=	. On the other
hand, physical intuition and previous approximate
calculations22,23 suggest that dc should be finite. A more re-
cent work24 has reached the same conclusion. In this paper
we present rigorous analytical arguments and essentially ex-
act numerical results proving that dc�1 at all �; see Fig. 1.

Since dc is finite, interpolation formula �10� must overes-
timate the binding energy at large d. We show that near the
biexciton dissociation threshold,

dc − d 
 D , �11�

where D	1 for �	1 and D	exp�−�−1/2� for �
1, func-
tion EB�d� behaves as

EB 
 E0e−D/�dc−d�. �12�

This equation resembles the well-known expression for the
energy � of a bound state in a weak 2D potential V�r�. Such
a state exists if

W �
M

2��2� d2rV�r�  0, �13�

where M is the mass of the particle. Near the threshold W
→0 one finds25

��� � e−1/�W�, �W� 
 1. �14�

The exciton-exciton interaction potential V�r� in general does
not satisfy the condition of the perturbation theory V�r�r2


�2 /M, with M =me+mh. Therefore, Eq. �14� does not lit-
erally apply here. Nevertheless, the physical origins of the
exponential dependence in Eqs. �12� and �14� are the same;
see Sec. II B.

We verify and complement the above analytical results
numerically using the stochastic variational method
�SVM�.26 The SVM has proven to be a powerful technique
for computing the energies of few-particle systems.27 For
example, it has given the best estimates of EB for direct
biexcitons,19,20 d=0. Our calculations are largely in excellent
agreement with those of Ref. 17; see Fig. 2 and Table I.
Thus, Eq. �10� is certainly useful as an interpolation formula
for not too large d. However, near the estimated dc, our re-

sults favor Eq. �12� over Eq. �10�. Since the SVM is varia-
tional, we can be sure that it is more reliable when it gives a
larger EB than other methods.

The remainder of the paper is organized as follows. In
Sec. II we derive a few analytical bounds on EB and
asymptotic formula �12�. Numerical calculations are pre-
sented in Sec. III. Section IV is devoted to discussion and
comparison with results in previous literature. Some details
of the derivation are given in Appendixes A and B.

II. ANALYTICAL RESULTS

In this section we approach the biexciton problem by ana-
lytical methods. Since the exact solution seems out of reach,
the best one can do is to consider certain limits where suit-
able control parameters exist. Below we examine three of
them. First, we study large-d excitons. We prove that they
cannot bind into a stable biexciton. Second, we consider the
immediate vicinity dc−d
1 of the dissociation threshold dc.
We derive the asymptotical formula for the binding energy,
Eq. �12�, which is valid for arbitrary �. Finally, we analyze
the case �
1.

A. Exciton interaction at large d

The absence of stable biexcitons at large d is due to the
lack of binding in the classical limit, which is realized at
such d. Indeed, if we temporarily change the length units to
d and energy units to e2 /�d, then the potential energy U in
Eq. �5� becomes d independent while the kinetic energy T
acquires the extra factor ae /d
1 compared to Eq. �4�.
Hence, the potential energy dominates. A rigorous proof that
dc	 can be constructed by dealing with the quantum and
many-body aspects of the problem separately. The many-
body part is handled at the classical level. Thereafter the
quantum corrections are included. With further analysis, both
parts of the argument can be reduced to simpler problems for
which controlled approximations exist.

Since the Earnshaw theorem does not apply in two dimen-
sions, the absence of a stable classical biexciton is not im-
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FIG. 2. �Color online� Binding energy vs the distance between
the quantum wells for the mass ratios �=1 and 0.5. Our results
based on the SVM are shown as the solid lines. The dots are results
of the DMC calculation from Ref. 17.
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mediately obvious. However, we verified it following these
steps. The classical ground state is the global minimum of
the potential energy. We can do the minimization over the
electron positions r1 and r2 first. Letting R be the distance
between the holes,

R = R1 − R2, �15�

then the energy function to minimize is �in the original unit
convention�

UR =
2

�r1 − r2�
+

2

R
− �

j=1,2

t=�R/2

v�r j − t,d� . �16�

It can be shown that for all R the lowest energy is achieved
when the in-plane coordinates of the four charges fall on a
straight line; see Fig. 3. Forming a cross is the only other
viable alternative, but it always has a higher energy. For the
linear geometry of the system, numerically exact results for
Umin�R ,d��minr1,r2

UR are obtained trivially. The plot of
Vcl�R��Umin�R ,d�+ �4 /d� is shown in Fig. 3. This combina-
tion can be thought of as the classical limit of the exciton
interaction potential V�R�. Function Vcl monotonously de-

TABLE I. Biexciton binding energies in units of Rye from the previous �“DMC,” Ref. 17� and present
�“SVM”� works.

�=1 �=0.5

d�ae� DMC SVM d�ae� DMC SVM

0.000 0.3789 0.3858 0.000 0.5381 0.5526

0.020 0.3084 0.3089 0.015 0.4443 0.4450

0.040 0.2538 0.2546 0.030 0.3695 0.3689

0.060 0.2118 0.2133 0.045 0.3104 0.3109

0.080 0.1794 0.1807 0.060 0.2639 0.2649

0.100 0.1532 0.1542 0.075 0.2265 0.2275

0.120 0.1315 0.1324 0.090 0.1956 0.1966

0.140 0.1135 0.1141 0.105 0.1696 0.1707

0.160 0.0982 0.0986 0.120 0.1477 0.1487

0.180 0.0851 0.0855 0.135 0.1291 0.1299

0.200 0.0738 0.0742 0.150 0.1130 0.1136

0.220 0.0640 0.0644 0.165 0.0989 0.0995

0.240 0.0556 0.0559 0.180 0.0865 0.0872

0.260 0.0483 0.0485 0.195 0.0757 0.0764

0.280 0.0418 0.0420 0.210 0.0663 0.0670

0.300 0.0361 0.0363 0.225 0.0580 0.0586

0.320 0.0311 0.0313 0.240 0.0507 0.0512

0.340 0.0267 0.0270 0.255 0.0443 0.0447

0.360 0.0229 0.0231 0.270 0.0385 0.0389

0.380 0.0195 0.0197 0.285 0.0333 0.0337

0.400 0.0165 0.0167 0.300 0.0286 0.0291

0.420 0.0140 0.0141 0.315 0.0241 0.0250

0.440 0.0117 0.0118 0.330 0.0200 0.0214

0.460 0.0096 0.0097 0.345 0.0165 0.0182

0.480 0.0078 0.0079 0.360 0.0135 0.0154

0.500 0.0063 0.0065 0.375 0.0112 0.0129

0.520 0.0051 0.0052 0.390 0.0096 0.0107

0.540 0.0040 0.0040 0.405 0.0087 0.0087

0.560 0.0030 0.0031 0.420 0.0076 0.0071

0.580 0.0021 0.0023 0.435 0.0064 0.0056

0.600 0.0013 0.0017 0.450 0.0051 0.0044

0.620 0.0007 0.0012 0.465 0.0039 0.0033

0.640 0.0002 0.0007 0.480 0.0027 0.0024
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creases with R and achieves its global minimum at R=	.
This means that classical excitons do not form a bound state.

At large R, function Vcl�R� follows dipolar interaction law
�1� with the quadrupolar, etc., corrections:

Vcl�R,d� =
2d2

R3 −
3

2

d4

R5 + O� d6

R7�, R � d . �17�

Quantum corrections due to the zero-point motion about the
classical ground state are not able to compete with the dipo-
lar repulsion when d is large; see Appendix A. Therefore,
there is a critical dc=dc��� above which a stable biexciton
does not exist.

B. Binding energy near dc

In this subsection we examine the biexciton state near the
dissociation threshold dc for arbitrary �. It is easy to under-
stand that in this regime the biexciton orbital wave function
� should have a long tail extending to large distances away
from the center of mass of the system. Inside of this tail the
configurations of electrons and holes resemble a pair of well-
separated individual excitons. Therefore, at r�1, where r is
the distance between the centers of mass of two such exci-
tons, � takes the asymptotic form

� = 1 + �− 1�sP12���r� �
j=1,2

���r j − R j� , �18�

r =
1

1 + �
R +

�

1 + �
�r1 − r2� . �19�

Here s is the total electron spin, �� is the ground-state wave
function of a single exciton with mass ratio �, and operator
P12 exchanges r1 and r2. Let us assume, for simplicity, that
holes are spin-1/2 particles. Then the wave function � of the
relative motion must have the parity ��−r�= �−1�s+S��r�,
where S is the total spin of the holes. Our goal in this sub-

section is to determine the behavior of � at large r and use it
to derive Eq. �12�.

We proceed, as usual, by expanding � into partial waves
of angular momenta m �m and s+S must be simultaneously
odd or even�. The equation for the radial wave function �m�r�
reads

−
1

r

d

dr
r
d�m

dr
+ ��2 + �V�r� +

m2

r2 ��m = 0, �20�

where � and � are defined by

� = ��EB, � =
1 + �

2�
. �21�

At small distances, potential V�r� is either ill defined or com-
plicated, but for r�d it obeys the dipolar law V�r�=2d2 /r3

Eq. �1��. From this, it is easy to see that �V�r�r2
1 at r
�b with b given by

b = 8�d2. �22�

At such r the potential energy V acts as a small
perturbation.25 Therefore, �m�r� coincides with the wave
function of a free particle,

�m�r� = c1Km��r�, r � b . �23�

Note that b is either on the order of or much larger than d
because ��2 and d
dc	1.

Sufficiently close to the critical d, we have �
1 /b. In
this case there exists an interval of distances b
r

b1/3�−2/3 where we can drop the term �2 in Eq. �20� com-
pared to �V�r�. After this, Eq. �20� admits the solution

�m�r� = I2m��b

r
� − 4c2K2m��b

r
� , �24�

where I2m�z� and K2m�z� are the modified Bessel functions of
the first and the second kinds, respectively.28 The unit coef-
ficient for I2m�z� and the factor of �−4� in front of c2 are
chosen for the sake of convenience. The ground-state solu-
tion is obtained for m=0. Using the asymptotic expansion28

of I0 and K0 in Eqs. �23� and �24� and demanding them to be
consistent with one another, we find for m=0 and b
r

�−1 the following:

�0 = 1 − 2c2�ln�4r

b
� − 2�� + O�b

r
� , �25�

c2 = −
1

6� + 2 ln�b�/8�
=

1

ln�E0/EB�
, �26�

where

E0 =
8

e6�� �

1 + �
�3 1

d4 . �27�

Here �=0.577. . . is the Euler-Mascheroni constant.28 Equa-
tion �25� specifies the boundary condition to which the solu-
tion for �0 in the near field, r�b, must be matched.

At d=dc, both � and c2 vanish. Wave function �0�r� at
small � can be viewed as the wave function for d=dc per-
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FIG. 3. �Color online� Main panel: Ground-state energy Umin vs
the separation R of holes for a pair of classical excitons. In this state
all four charges are on the same straight line. Inset: In-plane dis-
tance between nearest electrons and holes vs R.
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turbed by the small change in the boundary condition in the
far field, r�b, and by another perturbation,

�2 + �V�r��dc

d ,

in the near field, r�b. To the first order in these perturba-
tions we have

EB = − Ac2 + B�d,�2� , �28�

where A is a constant and B is a smooth function subject to
the condition B�dc ,0�=0. Expanding B to the first order in
dc−d and �2, we arrive at the transcendental equation for EB:

�1 − �
�B

��2�EB +
A

ln�E0/EB�
= −

�B

�d
�dc − d� . �29�

The solution cannot be written in terms of elementary func-
tions. However, at EB
E0 the logarithmic term gives the
sharpest dependence on EB. In this limit, the first term on the
left-hand side of Eq. �29� can be dropped. Now this equation
can be easily solved to recover Eq. �12� with

D =
A

C
, C = −

�B

�d
. �30�

The coefficients A and C must be determined from the solu-
tion of the inner problem. For �
1 part of this task can be
accomplished analytically, as explained later in this section.
For �	1 a numerical solution, such as the one discussed in
Sec. III, seems to be the only alternative.

Our results comply with a general theorem,29 which states
that in the asymptotic limit k= i�→0 the scattering phase
shift ��k� satisfies the equation

��/2�cot ��k� = ln�k/2� + f�k2� , �31�

where f�z� is some analytic function. This theorem is valid
for a general short-range potential in two dimensions. For a
bound state cot ��k� should be replaced by i, leading to

ln��EB/4� + 2f�− �EB� = 0, �32�

which is in agreement with our Eq. �29�. Our derivation has
the advantage of showing that the proper dimensionless com-
bination in the argument of the logarithm is EB /E0 and that
asymptotic behavior �12� is realized at EB
E0.

C. Binding energy for small mass ratios

Although the electron-hole mass ratio is not truly small in
typical semiconductors, it is interesting to examine the case
�
1 from the theoretical point of view. At such � the exci-
ton interaction potential V can be meaningfully defined at all
distances using the Born-Oppenheimer approximation
�BOA�.30,31 In addition, the radial wave function can be com-
puted everywhere with accuracy of O���.

The distance r between excitons is no longer a physically
reasonable variable when the four particles approach each
other closely and their partitioning into excitons becomes
ambiguous. In the BOA this problem is mitigated by select-
ing R—the distance between the heavy charges—to be the
radial coordinate of choice. The ground-state biexciton wave
function is taken to be

� = ��R���R,r1,r2� , �33�

where � is the ground state of two interacting electrons sub-
ject to the potential of two holes fixed at positions R1,2
= �R /2:

HBOA� = − �1
2 − �2

2 + UR�r1,r2��� = UBOA� . �34�

Here UBOA�R� is the corresponding energy. In turn, ��R� is
found from

−
1 + �

R

d

dR
R

d�

dR
+ �UBOA�R� − EBOA�� = 0. �35�

The BOA is known to have O��� accuracy. In principle, it
can be systematically improved.32 However, since below we
will be solving Eq. �35� by means of the quasiclassical ap-
proximation, which itself is known to be accurate only up to
O���, this is unwarranted.

Dropping all inessential O��� terms, we can simplify Eq.
�35� as follows:

−
1

R

d

dR
R

d�

dR
+ �2 + �V�R��� = 0, �36�

V�R� � UBOA�R� − UBOA�	� . �37�

Our task is to solve this equation with boundary conditions
���0��	 at the origin and

��R� 
 I0��b

R
� − 4c2K0��b

R
� �38�

at b
R
b1/3�−2/3, with c2 given by Eq. �26�.
We reason as follows: in order to have a bound state,

potential V�R� must be negative over some range of R. It can
be shown that this occurs in a single contiguous interval; see
Fig. 4 and Sec. III. Inside of this interval there is a classically
allowed region, �V�R�−�2, where function ��R� reaches a
maximum. As we approach the dissociation threshold, this
region shrinks. Near the threshold it becomes very narrow, so
that the quadratic approximation

−EB
d �−1 R

R+

R0

R−

V(R)

χ(R)

−B

b

FIG. 4. �Color online� Sketch of the interaction potential V�R�
and the exciton wave function ��R� for the Born-Oppenheimer limit
�
1.
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�V�R� 
 − �2 +
1

2
�V��R − R−��R − R+� �39�

becomes legitimate. Here R− and R+ are the turning points.
To construct the desired solution we simply need to match
��R� in the classical region, R−RR+, inside the tunneling
region, R+
R
b, and in the far field, R�b. Details of this
calculation are outlined in Appendix B. The result is

A = 4��
e
�V��1/2

exp�− 2S0� , �40�

S0 =
1

�2�
�

R+

	

dR�V�R� , �41�

B = �V�R0�� − ��V�, �42�

where R0= �R++R−� /2 is the point where V�R� has the mini-
mum.

Equations �30� and �40� imply that the coefficient D in
Eq. �12� and so range �11� of d where Eq. �12� applies are
proportional to the exponentially small factor e−2S0 at �
1.
We expect that D grows with � and by extrapolation reaches
a number on the order of unity at �	1.

A few other properties of function dc��� can also be de-
duced analytically. For example, Eq. �42� implies that

dc�0� − dc��� � ��, � 
 1. �43�

Hence, dc��� has an infinite derivative at �=0 and so ini-
tially decreases with �. At some �, however, dc��� must start
to increase. Indeed, due to the electron-hole symmetry Eq.
�9��, the combination dc��� / �1+�� must have a vanishing
derivative at �=1. Therefore,

dc��1� = dc�1�/2 � 0. �44�

Finally, we have a strict upper bound �similar to that in Ref.
33�

dc��� � �1 + ��dc�0� . �45�

All of these properties are borne out by our Fig. 1. Still, a
purely analytical solution of the biexciton problem does not
appear to be possible at any �. In Sec. III, we approach it by
numerical calculations.

III. NUMERICAL SIMULATIONS

In order to verify our analytical predictions and other re-
sults in the literature,17,24 we have carried out a series of
numerical calculations using the SVM. The SVM is a highly
accurate variational method with all parts of the Coulomb
interaction �Hartree, exchange, and correlation� accounted
for. To implement this method we customized the published
SVM computer code34 for the problem at hand. In the SVM
one adopts a nonorthogonal basis of correlated Gaussians in
the form27

Gn = exp�−
1

2
x†Bnx� , �46�

from which a variational wave function of given electron and
hole spins �S and s, respectively� is constructed:

� = AGn��r����S,s� . �47�

Here x is a 3�1 vector of Jacobi coordinates �linear combi-
nations of differences in particle coordinates in which the
kinetic energy separates�, Bn is a positive-definite 3�3 ma-
trix, A is the antisymmetrizer, and �S,s is the spin wave
function. All our SVM calculations are done for the spin-
singlet state S=s=0. Note that Gn corresponds to the zero
total momentum of the system.

The number of basis states is grown incrementally until
the energy is converged or the prescribed basis dimension
�typically 700� is reached. At each step a new quadratic form
Bn is generated randomly. If adding the corresponding func-
tion Gn to the basis improves the variational energy signifi-
cantly, this Gn is kept. Otherwise, a new Bn is generated by
varying some of its matrix elements. Details can be found in
Refs. 27 and 34.

Our numerical results for �=0.5 and �=1 are given in
Table I and plotted in Fig. 2. In Fig. 5 we replot the binding
energy EB for �=1 in a form suitable for testing Eq. �12�:

1

ln�E0/EB�
=

dc − d

D
+

�dc − d�2

D1
. �48�

Here we take into account one more term in the Taylor ex-
pansion of the right-hand side of Eq. �28� compared to Eq.
�29�. Extrapolation of the data to EB=0 gives us dc. The
uncertainties in this parameter are estimated by imposing a
95% confidence level on the fit coefficients dc, D, and D1.
The same procedure has been applied to several other mass
ratios in the interval 0.1��1. The results for dc are shown
in Fig. 1. Their comparison with other results in the literature
will be addressed in Sec. IV.

0.45 0.6 0.75 0.9
0

0.1

0.2

dc

d (ae )

1 /
ln
(E
0
/E
B
)

FIG. 5. �Color online� Logarithmic plot of the biexciton binding
energy as a function of d for �=1. Our results are shown as the
filled symbols; the open circles are from Ref. 17. The thicker line is
the fit to Eq. �48�, which yields dc=0.87�0.01 with a 95% confi-
dence level. The other line is Eq. �10� with � and � from Ref. 17.
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At ��0.1 range �11� of d where Eq. �12� applies is ex-
ponentially small. Even with our highly accurate numerical
method, we were not able to probe this range. Thus, we
assumed that the nonanalytical correction Ac2�EB� is unde-
tectable on the background of EB in Eq. �28�, so that our
numerical results for EB�d� at such � are dominated by the
regular contribution

EB = C�dc − d� + C1�dc − d�2 + ¯ . �49�

Accordingly, at ��0.1 we deduced dc from the fit of EB�d�
to a quadratic polynomial. Additionally, we confirmed that at
�=0.2 the two fitting procedures give similar results: dc
=0.59�0.01 per Eq. �48� vs dc=0.58�0.01 per Eq. �49�.

Finally, we have computed the electron and hole densities
in the biexciton as a function of their distance from the cen-
ter of mass. Examples are presented in Fig. 6 for d=0.0 and
d=0.3. In the latter case the particles are on average farther
away from the center of mass. The same trend is also seen in
the average root-mean-square separations between various
particles, which are plotted in Fig. 7. Their accelerated
growth with d occurs because the biexciton becomes less
bound and eventually dissociates.

IV. DISCUSSION

Let us compare our results with previous theoretical work.
Early studies of the biexcitons based on Hartree-Fock23 or
Heitler-London35 approximations provided initial evidence
for the existence of a finite threshold dc for the biexciton
dissociation. However, they gave a considerably lower dc
than what we find here because these approximations did not
account for all correlation effects essential to the biexciton
stability.

Comparing with more recent calculation17 of the biexciton
binding energies by the DMC technique, we find overall ex-
cellent agreement. Still, our SVM occasionally slightly out-
performs the DMC; see Table I. By this we mean that the
SVM is able to find a higher EB at some d. Indeed, since the
SVM is variational and the single-exciton energy EX is com-
puted extremely accurately, exact EB can only be higher than
what we have found. A related property of the SVM, which
speaks of its advantage over Monte Carlo methods, is the
monotonic decrease in the ground-state energy at each step,
so that the statistical noise is never an issue.

Neither the SVM nor the DMC is able to compute arbi-
trarily small binding energies; therefore, in order to deter-
mine dc, an extrapolation to EB=0 is necessary. The clarifi-
cation of what extrapolation formula should be used for this
purpose is an important finding of this work. Equation �48�
represents the true asymptotic behavior in the limit of small
EB and indeed describes our numerical results at such EB
better than interpolation formula �10� plotted alongside for
reference.

Another recent theoretical work on biexcitons used a
Born-Oppenheimer-type approximation, which differs from
the usual adiabatic BOA Eq. �35�� by the replacements

1 + � → 1, UBOA�R� →
1

1 + �
UBOA� R

1 + �
� . �50�

Thus, both the kinetic and interaction terms are reduced by
the factor of 1+�. In addition, the interaction potential is
expanded in the radial direction by the same factor. The mo-
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FIG. 6. �Color online� �a� Electron and hole density vs the dis-
tance to the center of mass in a biexciton with �=0.5 and d=0.3.
�b� Same as �a� for �=0.5 and d=0.0.
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FIG. 7. �Color online� Root mean square of the pairwise dis-
tances between the biexciton constituents vs d for �=0.5 and �
=1. Here e-e, h-h, and e-h are, respectively, electron-electron, hole-
hole, and electron-hole distances.
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tivation for these changes was to preserve the electron-hole
symmetry Eq. �9�� and the correct single-exciton binding
energy EX at infinite separation.36

While the adiabatic BOA is known to give a strict lower
bound37 for the ground-state energy, no such statement can
be made about the approximation of Ref. 24. As a result of
this approximation, the kinetic energy is further underesti-
mated. The potential energy is overestimated, at least, at
large exciton separations, where replacement �50� magnifies
the actual dipolar repulsion by the factor of �1+��2. It seems
that these opposite contributions largely balance each other:
our binding energies EB are generally close to those of Ref.
24; cf. our Fig. 2 and Fig. 5 of Ref. 24. Therefore, the large
discrepancy between our and their dc seen in Fig. 1 is again
related to the manner in which the EB→0 extrapolation was
performed36 in Ref. 24. At small mass ratios, where the ap-
proximation of Ref. 24 becomes accurate to the order O���,
our results are in fact in good agreement.

Turning to the experimental implications of our theory,
observations of biexcitons in single quantum well systems
have been reported by many experimental groups.9–16 In con-
trast, no biexciton signatures have ever been detected in
electron-hole bilayers. Let us discuss how this can be under-
stood based on our results.

The first point to keep in mind is that the biexciton disso-
ciation threshold dc plotted in Fig. 1 is a zero-temperature
quantity. For the biexcitons to be observable at finite tem-
peratures, EB must exceed kT by some numerical factor. �As
usual in dissociation reactions,38 this factor is larger the
smaller the exciton density is.� The coldest temperature dem-
onstrated for the excitons in quantum wells is T	0.1 K.39

The maximum separation d� between the 2D electron and
hole layers at which biexcitons are still physically relevant in
such structures can be roughly estimated from

EB�d�� = 10−3Rye. �51�

Function d���� is plotted as triangles in Fig. 1. In GaAs
quantum wells we have40 ��0.5 and ae=10 nm, and so
d��4.5 nm. In comparison, the smallest center-to-center
separation that has been achieved in GaAs/AlGaAs and
InGaAs/GaAs quantum wells without compromising the
sample quality is at least twice as large.8 Cold gases of indi-
rect excitons have also been demonstrated in AlAs/GaAs
structures,18 in which d is smaller, d=3.5 nm. But the elec-
tron Bohr radius is also smaller, ae�3 nm, so, unfortu-
nately, the dimensionless d is about the same.

A more serious obstacle to the creation and observation of
biexcitons is disorder. A rough measure of disorder strength
is given by the linewidth of the exciton optical emissions,
which is currently 	1 meV, i.e., on the order of 0.1Rye in
GaAs. EB becomes smaller than this energy scale as soon as
d exceeds the thickness of a few atomic monolayers; see Fig.
2. Actually, if the disorder were due to a long-range random
potential, it might still be possible to circumvent its influence
on the measured optical linewidth by interferometric meth-
ods such as quantum beats.11,13 In reality, a short-range ran-
dom potential is probably quite significant.

One potentially promising system for the study of the
biexciton stability diagram is a single wide quantum well

subject to an external transverse electric field.41 If the well is
symmetric and the applied field is zero, we have d=0. A
finite field can pull electrons and holes apart, leading to d
�0. Of course, for such a structure one should recalculate
the stability diagram in Fig. 1 by taking into account the
motion of particles in all three dimensions.

Although it is challenging to observe the binding of free
indirect excitons, in experiments they can be loaded and held
together in artificial traps.42 We anticipate that the SVM can
be a powerful tool for studying systems of a few trapped
excitons theoretically, complementing recent Monte Carlo
work.43–45

In conclusion, we have obtained the most accurate esti-
mates to date of the binding energies of two-dimensional
biexcitons. Future work may include a refined study of
exciton-exciton scattering24 and investigations of excitons in
artificial traps and exciton systems of finite density. The ab-
sence of stable biexciton states implies that the ground state
in the last case should be an “atomic” rather than a “molecu-
lar” superfluid.
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APPENDIX A: RIGOROUS BOUNDS FOR THE
BIEXCITON BINDING ENERGY

In this appendix we give a few strict upper bounds on EB,
which enable us to prove the nonexistence of stable biexci-
tons at sufficiently large d. The basic logic of the proof was
outlined in Sec. II A. Here we provide the technical details.

Our starting bound is

EB � max
R

ER, �A1�

where

ER = inf spec H	 − inf spec HR �A2�

is the binding energy of the two-electron Hamiltonian HR
=TR+UR whose kinetic term is

TR = − �1 + ����1
2 + �2

2� , �A3�

and the potential term UR is given by Eq. �16�. The Hamil-
tonian HR is similar to that of the original problem Eqs.
�4�–�18�� except the holes are replaced by static charges
separated by a given distance R and the electron mass is
made equal to the reduced electron-hole mass.

To derive inequality �A1� we take advantage of the well-
known theorem that the ground-state energy as a concave
function in the strength of an arbitrary linear perturbation.
�This theorem follows from the variational principle.� For
our purposes we choose the perturbation in the form
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�Tj = � j
2 − �Rj

2 . �A4�

We add it to the kinetic-energy terms with the coefficient
−�� �1, yielding Tj→Tj + �Tj. Hamiltonians H and HR
are obtained by setting  =0 and  =−�, respectively.

The perturbation leaves the reduced electron-hole mass
invariant. Therefore, it does not affect the ground-state en-
ergy EX of a single exciton. The energy EXX� � does vary
with  and the aforementioned concavity property dictates
that

EXX� � �
1 −  

1 + �
EXX�− �� +

 + �

1 + �
EXX�1� . �A5�

Since EXX�−��=EXX�1� by electron-hole symmetry, the right-
hand side is equal to EXX�−�� for all  . Consequently,  =
−� gives the largest binding energy and we arrive at inequal-
ity �A1�.

If the kinetic energy TR is discarded, ER becomes equal to
−Vcl�R ,d�0. We want to ascertain that quantum corrections
do not change the sign of ER.

The quantum corrections appear in both EX and EXX. The
former are well understood.22 The internal dynamics of the
exciton in the large-d case is analogous to that of a 2D har-
monic oscillator with the amplitude of the zero-point motion
given by

��r1 − R1�2� = l2, l = d3/4�1 + ��1/4 
 d . �A6�

The corresponding energy correction is

EX +
2

d
=

2�1 + �

d3/2 − O� 1

d2� . �A7�

This result immediately restricts the range of R where the
stable biexciton may in principle exist. By positivity of the
kinetic energy, ER2EX−Umin�R ,d�, where Umin is defined
in Sec. II A. Therefore, ER�0 may occur only at R that
satisfy

Vcl�R� � 2EX +
4

d
. �A8�

In view of Eqs. �17� and �A7�, R must necessarily be much
larger than d.

Choose an arbitrary d1 such that d
d1
R. By definition
of Umin,

UR � Umin�R,d1� + VY�r1� + VY�r2� , �A9�

VY�r� = �
t=�R/2

v�r − t,d1� − v�r − t,d�� . �A10�

Accordingly, ER2EX−Umin�R ,d1�−2EY, where EY is the
ground-state energy of a single electron subject to the poten-
tial VY�r� of four out-of-plane charges. This potential has the
shape of two symmetric wells separated by the distance R.
The amplitude of the zero-point motion in each well is again
l
R. Therefore, the energy shift due to tunneling between
the wells is exponentially small. �A rigorous upper bound
can be given.46� Furthermore, potential VY near the bottom of
each well coincides with that of a single exciton up to a
constant

�VY = VY�R

2
� −

2

d
=

2

d1
+

d1
2 − d2

R3 . �A11�

Hence, EY =EX+�VY and

ER � −
2d2

R3 − �Vcl�R,d1� −
2d1

2

R3 � . �A12�

In these formulas we have dropped subleading terms
o�l2 /d1

2�, o�d1
4 /R5�, etc. With the same accuracy the bracket

in Eq. �A12� vanishes cf. Eq. �17��, so that we arrive at the
result ER
−Vcl�R ,d�. This simply means that at large d all
quantum corrections to ER are parametrically smaller than
the direct dipolar repulsion of the two excitons. Therefore,
ER�0 at all R, so that EB�0, and the proof is complete.

APPENDIX B: RADIAL WAVE FUNCTION FOR SMALL
MASS RATIOS

In this appendix we show how the suitable solution of Eq.
�36� can be constructed within the quasiclassical approxima-
tion. The necessary connection formulas are derived by
asymptotic matching with two exact solutions at small and
large R.

It is convenient to define the rescaled wave function
!�R�=��R��R. From Eq. �36� we find that ! satisfies the
equation

!� − ��2 + �V�R� −
1

4R2�! = 0. �B1�

This equation has two linearly independent quasiclassical so-
lutions,

!��R� =
1

�Q�R�
exp��S�R� − S�b��� , �B2�

where Q and S are given by

Q�R� = ��2 + �V�R�, S�R� = �
R+

R

d"Q�"� . �B3�

The subtraction of the R-independent term S�b� in the expo-
nentials amounts to multiplying !� by unimportant con-
stants. This is done for the sake of convenience. The cen-
trifugal barrier 1 /4R2 in the formula for Q is dropped
because we need the quasiclassical solution only at �
R

b where �V�R�−V�R0���1 /4R2. Here R0= �R++R−� /2 is
the point where the potential V�R� has the minimum. �Actu-
ally, if we wished to use the quasiclassical method at R
�,
dropping the centrifugal barrier would indeed be necessary
in order to compensate for the well-known inaccuracy of this
approximation near the origin.47�

In the following we assume that �
1 /b, in which case
there exists a broad interval d
R
b where potential V�R�
is dominated by dipolar repulsion �1�. In this interval,
�V�R�
b /4R3��2; therefore,

!��R� 
 �4

b
R3�1/4

exp���1 −�b

R
�� . �B4�

Using the asymptotic expansion formulas28 for I0 and K0, it
is easy to see that the linear combination
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!�R� 

e

2��
!−�R� −

2��
e

c2!+�R� �B5�

of the quasiclassical wave functions in Eq. �B4� smoothly
matches with exact solution �38� at d
R
b. This is our first
connection formula. It is crucial for this derivation because
in the intermediate range of distances b
R
� the quasi-
classical approximation breaks down. �It is invalidated by the
sharp decrease in V with R.� In that region ��R�=! /�R ex-
hibits a slow logarithmic falloff Eq. �25�� instead of the
algebraic decay suggested by Eq. �B4�. As explained in Sec.
II, nonanalytical behavior �12� of the binding energy is pre-
cisely due to this logarithmic falloff.

To finish the calculation we need a second connection
formula between � given by Eq. �B5� and the same function
near the classical turning point R+. To find it we take advan-
tage of the exact solution for harmonic-oscillator potential
�39� in terms of the parabolic cylinder function,28

! � D�−1/2�− �2x�, x =
R − R0

l
, �B6�

where l= �2 /�V��1/4 is the amplitude of zero-point motion
about this minimum, and �, given by

� =
1

2
l2��V�R0�� − �2� , �B7�

is the corresponding energy in units of the oscillator fre-
quency #=2 /�l2. For the ground state we expect

� � � −
1

2

 1. �B8�

The negative sign in the argument of D�−1/2 in Eq. �B6� is
chosen to obtain an exponentially decaying wave at large
negative x, i.e., from the left turning point R− and toward the

origin. At large positive x, that is, at R−R+� l, both decaying
and growing exponentials are present. At such x the wave
function can be cast into the quasiclassical form

! 
 �
�=�

c�

�x
exp���

�2�

x

d$�$2 − 2�� , �B9�

which is equivalent to

�l!�R� 
 c−e−S�b�!−�R� + c+eS�b�!+�R� . �B10�

See Eqs. �39�, �B2�, and �B6�. This is our second connection
formula except that we still have to specify the pre-
exponential factors c+ and c−. In fact, only their ratio is im-
portant. With the help of the asymptotical expansion28 for
D�, one finds it to be48

c+

c−

 − 2��e� . �B11�

Comparing Eqs. �B5� and �B10�, we obtain

� 
 −
1

2��e

c+

c−

 2��

e
c2e−2S�b�−2. �B12�

For � at which the above calculation is valid, we have S�b�

S0−1, where S0=S�R=	 ,�=0�. Thus, we arrive at

�2 
 ��V�R0�� −
1

l2 − 4��

e

c2

l2 e−2S0, �B13�

which leads to Eqs. �40�–�42� of Sec. II.
Finally, a minor technical comment is in order. Since we

have used the quasiclassical approximation, all coefficients
in Eq. �B13� have a relative accuracy O�e−S�b��. In particular,
we expect that in place of V�R0� we have a slightly more
negative value, so that the ground-state energy −EB never
exceeds the oscillator ground-state energy V�R0�+1 / �2�l2�,
as required by physical considerations.

1 M. Hagn, A. Zrenner, G. Böhm, and G. Weimann, Appl. Phys.
Lett. 67, 232 �1995�.

2 A. V. Larionov, V. B. Timofeev, J. Hvam, and K. Soerensen, Zh.
Eksp. Teor. Fiz. 117, 1255 �2000� JETP 90, 1093 �2000��.

3 L. V. Butov, A. C. Gossard, and D. S. Chemla, Nature �London�
418, 751 �2002�.

4 Z. Vörös, R. Balili, D. W. Snoke, L. Pfeiffer, and K. West, Phys.
Rev. Lett. 94, 226401 �2005�.

5 A. L. Ivanov, L. E. Smallwood, A. T. Hammack, Sen Yang, L. V.
Butov, and A. C. Gossard, Europhys. Lett. 73, 920 �2006�.

6 A. A. High, E. E. Novitskaya, L. V. Butov, M. Hanson, and A. C.
Gossard, Science 321, 229 �2008�.

7 S. Yang, A. T. Hammack, M. M. Fogler, L. V. Butov, and A. C.
Gossard, Phys. Rev. Lett. 97, 187402 �2006�; M. M. Fogler, Sen
Yang, A. T. Hammack, L. V. Butov, and A. C. Gossard, Phys.
Rev. B 78, 035411 �2008�.

8 L. V. Butov, J. Phys.: Condens. Matter 19, 295202 �2007�.
9 R. C. Miller, D. A. Kleinman, A. C. Gossard, and O. Munteanu,

Phys. Rev. B 25, 6545 �1982�.

10 R. T. Phillips, D. J. Lovering, G. J. Denton, and G. W. Smith,
Phys. Rev. B 45, 4308 �1992�.

11 S. Bar-Ad and I. Bar-Joseph, Phys. Rev. Lett. 68, 349 �1992�.
12 D. Birkedal, J. Singh, V. G. Lyssenko, J. Erland, and J. M.

Hvam, Phys. Rev. Lett. 76, 672 �1996�.
13 S. Adachi, T. Miyashita, S. Takeyama, Y. Takagi, A. Tackeuchi,

and M. Nakayama, Phys. Rev. B 55, 1654 �1997�.
14 J. C. Kim and J. P. Wolfe, Phys. Rev. B 57, 9861 �1998�.
15 W. Langbein and J. M. Hvam, Phys. Status Solidi A 190, 167

�2002�.
16 M. Maute, S. Wachter, H. Kalt, K. Ohkawa, and D. Hommel,

Phys. Rev. B 67, 165323 �2003�.
17 M. Y. J. Tan, N. D. Drummond, and R. J. Needs, Phys. Rev. B

71, 033303 �2005�.
18 L. V. Butov and A. I. Filin, Phys. Rev. B 58, 1980 �1998�.
19 D. Bressanini, M. Mella, and G. Morosi, Phys. Rev. A 57, 4956

�1998�.
20 J. Usukura, Y. Suzuki, and K. Varga, Phys. Rev. B 59, 5652

�1999�.

A. D. MEYERTHOLEN AND M. M. FOGLER PHYSICAL REVIEW B 78, 235307 �2008�

235307-10



21 C. Riva, F. M. Peeters, K. Varga, and V. A. Schweigert, Phys.
Status Solidi B 234, 50 �2002�, and references therein.

22 Y. E. Lozovik and O. L. Berman, Zh. Eksp. Teor. Fiz. 111, 1879
�1997� JETP 84, 1027 �1997��.

23 S. Ben-Tabou de-Leon and B. Laikhtman, Europhys. Lett. 59,
728 �2002�.

24 Ch. Schindler and R. Zimmermann, Phys. Rev. B 78, 045313
�2008�; R. Zimmermann and Ch. Schindler, Solid State Com-
mun. 144, 395 �2007�.

25 L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrel-
ativistic Theory �Pergamon, New York, 1965�.

26 K. Varga and Y. Suzuki, Phys. Rev. C 52, 2885 �1995�.
27 Y. Suzuki and K. Varga, Stochastic Variational Approach to

Quantum-Mechanical Few-Body Problems, Lecture Notes in
Physics Vol. M54 �Springer, Berlin, 1998�, pp. 1–310.

28 I. S. Gradshteyn and I. M. Ryzhik, in Table of Integrals, Series,
and Products, 6th ed., edited by A. Jeffrey and D. Zwillinger
�Academic, San Diego, 2000�.

29 D. Bollé and F. Gesztesy, Phys. Rev. Lett. 52, 1469 �1984�;
Phys. Rev. A 30, 1279 �1984�.

30 M. Born and J. R. Oppenheimer, Ann. Phys. 84, 457 �1927�.
31 M. Born, Festschrift Göttinger Akademie der Wissenschaften, I:

Math.-Phys. Klasse 1 �1951�; M. Born and H. Huang, Dynami-
cal Theory of Crystal Lattices �Oxford University Press, New
York, 1998�.

32 To this end one can iteratively diagonalize the four-body biexci-
ton Hamiltonian HXX by a sequence of canonical transformations
�Refs. 49 and 50�. Equivalently, in the Lagrangian formalism,
one would integrate out two out of four fermion degrees of
freedom. This generates corrections to the potential and kinetic
terms of Eq. �36�.

33 J. Adamowski, S. Bednarek, and M. Suffczynski, Solid State

Commun. 9, 2037 �1971�.
34 K. Varga and Y. Suzuki, Comput. Phys. Commun. 106, 157

�1997�; the companion computer program is available at the
CPC Program Library, online at http://www.cpc.cs.qub.ac.uk

35 S. Okumura and T. Ogawa, Phys. Rev. B 65, 035105 �2001�.
36 Ch. Schindler and R. Zimmermann, private communication.
37 R. T. Pack and J. O. Hirschfelder, J. Chem. Phys. 52, 521

�1970�.
38 M. N. Saha, Proc. R. Soc. London, Ser. A, 99, 135 �1921�.
39 L. V. Butov, A. L. Ivanov, A. Imamoglu, P. B. Littlewood, A. A.

Shashkin, V. T. Dolgopolov, K. L. Campman, and A. C. Gos-
sard, Phys. Rev. Lett. 86, 5608 �2001�.

40 L. V. Butov, A. V. Mintsev, Yu. E. Lozovik, K. L. Campman, and
A. C. Gossard, Phys. Rev. B 62, 1548 �2000�.

41 L. Schultheis, K. Köhler, and C. W. Tu, Phys. Rev. B 36, 6609
�1987�.

42 A. T. Hammack, N. A. Gippius, Sen Yang, G. O. Andreev, L. V.
Butov, M. Hanson, and A. C. Gossard, J. Appl. Phys. 99,
066104 �2006�.

43 E. Anisimovas and F. M. Peeters, Phys. Rev. B 71, 115319
�2005�.

44 E. Anisimovas and F. M. Peeters, Phys. Rev. B 74, 245326
�2006�.

45 A. Filinov, M. Bonitz, P. Ludwig, and Yu. E. Lozovik, Phys.
Status Solidi C 3, 2457 �2006�.

46 Ph. Briet, J. M. Combes, and P. Duclos, Commun. Math. Phys.
126, 133 �1989�.

47 M. V. Berry and A. M. Ozorio de Almeida, J. Phys. A 6, 1451
�1973�.

48 S. C. Miller and R. H. Good, Phys. Rev. 91, 174 �1953�.
49 P. R. Bunker and R. E. Moss, Mol. Phys. 33, 417 �1977�.
50 S. Weigert and R. G. Littlejohn, Phys. Rev. A 47, 3506 �1993�.

BIEXCITONS IN TWO-DIMENSIONAL SYSTEMS WITH… PHYSICAL REVIEW B 78, 235307 �2008�

235307-11


